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Abstract. We investigate, both analytically and by computer simulation, the kinetics of a
microscopic model of hard rods adsorbing on a linear substrate. For a small, but finite desorption
rate, the system reaches the equilibrium state very slowly, and the long-time kinetics display three
successive regimes: an algebraic one where the density varies as 1/t , a logarithmic one where the
density varies as 1/ ln(t), followed by a terminal exponential approach. A mean-field approach
fails to predict the relaxation rate associated with the latter. We show that the correct answer can
only be provided by using a systematic description based on a gap-distribution approach.

In many situations, thermal energies are significantly smaller than the energy needed for
hard particles to diffuse, and under applied external forces the system evolves towards
non-equilibrium configurations, metastable configurations, or eventually reaches a stable
equilibrium state after a very slow process. For example, the adsorption of some proteins
and colloidal particles on solid surfaces [1] involves particle–surface energies that are so
strong that the process is characterized by extremely small desorption and surface diffusion
on the experimental timescale. In granular materials, particles are trapped in a metastable
configuration, unless external energy is brought to the system. Recent experiments [2, 3]
measured the densification of a vibrated granular material. A column containing monodisperse
spherical beads was tapped periodically with a given intensity and the powder evolved slowly,
essentially as the inverse of the logarithm of the number of taps, from a loosely packed state
to a denser steady state whose density depended on the tapping strength. In all these cases,
geometric exclusion effects dictate the kinetics of densification, i.e., addition of new particles
is exponentially limited by the inverse of the free volume [3, 4]. These effects are accounted
for in a simple adsorption–desorption model [3, 5, 6]. Its one-dimensional (1D) version, also
known as the parking lot model, was shown to display a 1/ ln(t) approach to the final state for
vanishing desorption rate [5, 6]. More recently, Ben Naimet al [7] proposed an approximate
solution of the model for a small but non-zero desorption rate. We discuss the solution and show
that the mean-field treatment (or adiabatic approximation) used in the late stage of the process
is not valid and greatly underestimates the characteristic time of relaxation. We develop a
more consistent approximation which shows good agreement with the numerical simulations.

The general definition of the adsorption–desorption model is as follows. Attempts are
made to add objects to a space of arbitrary dimension at randomly selected positions with a
constant ratek+. If the trial position does not result in an overlap with a previously placed
object, the new object is accepted. In addition, all objects in the system are subject to removal
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(desorption) at random with a constant ratek−. In the parking lot model, the substrate is a
line and the objects are hard rods. This 1D model has been solved in some limiting cases.
Whenk− = 0, the adsorption is totally irreversible and the process corresponds to a 1D random
sequential adsorption (RSA) for which the kinetics are known exactly [8]. Due to the absence of
a relaxation mechanism, this process evolves towards a non-equilibrium state and the long-time
kinetics are given by an algebraic scaling law,ρ∞ − ρ(t) ∼ 1/t , with ρ∞ ' 0.747. . . . When
k+ = 0, one recovers a desorption process for which analytical solutions are also available
[9]. In the limit k− → 0, accurate descriptions have been obtained [5, 6]. In this case, the
process cleanly divides into two sub-processes. The initial phase consists of an irreversible
adsorption and it is followed by an infinite sequence of desorption–adsorption events in which
a rod detaches from the surface and the gap that is created is immediately filled by one or two
new rods. The latter possibility causes the system to evolve continuously to the close-packed
state withρ = 1, as [5, 6] 1− ρ(t) ' 1/ ln(t ln(t)) wheret now represents a rescaled time.
For the general case, where bothk+ andk− are non-zero, no complete solution is available.

The properties of the parking lot model depend only on the ratioK = k+/k−. With
an appropriate rescaled time, the kinetic equation describing the evolution of the density of
adsorbed particles is given by

dρ

dt
= 8(t)− ρ

K
(1)

where8, the insertion probability at timet (or densityρ), is the fraction of the substrate
that is available for the insertion of a new particle. Thus, large values ofK correspond to
small desorption rates. The presence of a relaxation mechanism, even infinitesimally small,
implies that the system eventually reaches a steady state that corresponds to an equilibrium
configuration of hard particles withρeq = K8eq(ρeq), whereρeq denotes the equilibrium
density. At equilibrium, the insertion probability is given exactly by

8eq(ρ) = (1− ρ) exp(−ρ/(1− ρ)). (2)

Inserting equation (2) in equation (1) leads to the following expression for the steady state
(equilibrium) density:

ρ∞ = ρeq= Lw(K)

1 +Lw(K)
(3)

whereLw(x) (the Lambert-W function) is the solution ofx = yey . In the limit of smallK the
isotherm takes the Langmuir form (ρeq∼ K/(1 +K)) while for largeK, ρeq∼ 1− 1/ ln(K).
At small values ofK, equilibrium is rapidly obtained, but at large values the densification is
extremely slow. In the following, we restrict ourselves to the latter case. In the initial stages
of the process, desorption events are negligible compared with adsorption and the process
displays an RSA-like behaviour. Figure 1(a) shows simulation results (see below for details)
for the density versus 1/t in the intermediate density region (0.4 < ρ(t) < 0.75). The larger
the value ofK, the larger the scaling law region. Forρ(t) > 0.7, which impliesK > 100,
desorption can no longer be ignored, because it permits particle rearrangements on the line
and, eventually, insertion of additional particles. The mechanism for densification is similar to
that of the model with infinitely small desorption and the kinetics is dominated by the 1/ ln(t)
term (figure 1(b)). For large but finite values ofK, this regime persists until the density is
very close to the equilibrium value and the desorption term is comparable to the adsorption
term. In the final regime, an exponential approach to equilibrium is observed (figure 2(a)).
This terminal approach corresponds to the linear response regime.

To determine the kinetics of the densification process, a knowledge of8(ρ) is required.
The evolution equations can be expressed by means of the gap distribution functionsG(h, t)
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Figure 1. (a) Evolution of the adsorbed density versus 1/t for several values ofK, (K =
100, 500, 5000 from bottom to top) and for a RSA process (K = ∞, dashed curve). (b) Evolution
of the adsorbed density to its equilibrium value. At intermediate times, the adsorbed density evolves
as 1/ ln(t), while very close to equilibrium the density relaxes exponentially.

Figure 2. (a) Final exponential approach of the density to its equilibrium value. (b) Relaxation
rate0 for the approach to equilibrium. Upper curve: prediction from mean-field approximation,
equation (10). Intermediate curve: prediction from equation (17). Open circles: numerical
simulations.

which represents the density of voids of lengthh. The time derivative ofG(h, t) is given by

∂G(h, t)

∂t
= −H(h− 1)(h− 1)G(h, t) + 2

∫ ∞
h+1

dh′G(h′, t)

− 2

K
G(h, t) +

H(h− 1)

Kρ(t)

∫ h−1

0
dh′G(h′, h− 1− h′, t) (4)
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whereG(h, h′, t) is the gap–gap distribution function associated with the probability density
of finding two consecutive gaps of lengthh andh′ separated by one particle, andH(x) is
the unit step function. The first and third terms of equation (4) correspond to the destruction
of a gap of sizeh by adsorption and desorption, respectively; while the second and fourth
terms correspond to the creation of a gap of sizeh by adsorption and desorption, respectively
(see also [5]). A similar equation can be written forG(h, h′, t), which requires higher-order
gap distribution functions. As expected, even though it is 1D, this kind of process leads to
an infinite hierarchy of equations involving an infinite set of multi-gap distribution functions.
Only approximate solutions can be obtained, by means of a closure ansatz, that enables the
truncation of the hierarchy.

The insertion probability can be expressed in terms of the gap distribution function as

8(t) =
∫ ∞

1
dh (h− 1)G(h, t) (5)

and we have in addition the following sum rules:

ρ(t) =
∫ ∞

0
dhG(h, t) = 1−

∫ ∞
0

dhhG(h, t). (6)

The exact expression for the equilibrium (and consequently for the steady state) structure is
known [5, 6]; the gap distribution function is

Geq(h, ρ) = ρ2

1− ρ exp

(
− ρ

1− ρ h
)

(7)

and all higher-order distribution functions satisfy the factorization property,

Geq(h1, h2, . . . , hn, ρ) = Geq(h1, ρ)Geq(h2, ρ) . . . Geq(hn, ρ). (8)

An adiabatic (mean-field) approximation assumes that, at any densityρ(t), the structure of the
adsorbate acquires very rapidly an equilibrium form satisfying equations (7) and (8). This leads
to an expression for8 akin to equation (2) withρ(t) in place ofρeq. Therefore, expanding
equation (1) to first order in density,δρ(t) = ρ(t)− ρ∞, with ρ∞ = ρeq(K), one obtains

d

dt
δρ = −0MF (K)δρ + O(δρ2) (9)

with

0MF (K) = (1 +Lw(K))2

K
(10)

which implies an exponential approach to the equilibrium state with a relaxation time given
by K/ ln(K)2 for largeK. Using an event-driven (rather than a fixed time-step) algorithm
for the adsorption–desorption processes [10], we have performed Monte Carlo simulations for
K ranging from 10 to 5000. Averages were taken over 5000 independent runs. Figure 2(b)
shows the relaxation rate versusK: the full curve gives the mean-field prediction, equation (10),
and dots correspond to simulation results. It is evident that the mean-field analysis gives a
poor estimate of the relaxation rate for largeK. In contrast with adsorption models with
fast diffusion [12], the mean-field approximation is not valid here; the desorption mechanism
becomes so inefficient for largeK that the system does not follow a quasi-static path even
for the regression of small fluctuations to equilibrium. In figure 3, one observes that the
insertion probability8(t) displays a non-monotonic behaviour at long times forK > 100,
andapproaches the equilibrium value from below. Hence, at long times, the time derivative
of8 becomes positive. As the density remains an increasing function of time along the entire
process, the density derivative of the insertion probability is positive and bounded by 1/K by
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Figure 3. Approach of the insertion probability to its equilibrium value given by equation (2) as a
function of ln(t).

virtue of equation (1). Consequently, this also shows that the relaxation rate is smaller than
1/K. (Let us recall that both the density and time derivatives of8 are always negative in the
adiabatic approximation.)

To obtain the leading term in the exponential approach towards equilibrium, whenK is
very large (but finite), we assume that, as for the steady state (or equilibrium),|G(h, t)| ∼
exp(−5h), with5 ∼ lnK ∼ (1−ρ)−1 (see equations (7) and (3), whenK is very large). As
a consequence, if one definesρn(t) =

∫ n+1
n

G(h, t)dh and8n(t) =
∫ n+1
n
(h − 1)G(h, t)dh,

thenρn ∼ 8n ∼ K−n, so that if one looks for the dominant behaviour in 1/K, it is sufficient
to consider the first intervals inh. As in the adiabatic approximation, one can expand the gap
densities in power ofδρ(t) and keep only the linear term which gives rise to the exponential
decay. More specifically, by introducing

A(h) = ρ∞ ∂ lnG(h, ρ)

∂ρ

∣∣∣∣
ρ∞

(11)

whereA(h) is a piecewise continuous function, equation (4) can be rewritten for 0< h < 1 as

2− γ
K

A(h) = 2P∞
K

∫ +∞

h

dh′e−P∞(h
′−h)A(1 +h′) (12)

whereP∞ = ρ∞/(1 − ρ∞) is the equilibrium pressure forρ∞ = ρeq andγ = −K0 =
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−Kδ ˙ρ(t)/δρ(t)|ρ∞ . From equations (1) and (5), one obtains

γ = 1− P 2
∞

∫ ∞
0

dhhe−P∞hA(1 +h) (13)

whereas the sum rules in equation (6) give

P∞
∫ ∞

0
dh e−P∞hA(h) = −P∞

∫ ∞
0

dhhe−P∞hA(h) = 1. (14)

When integrating the two sides of equation (12) between 0 and 1, one obtains to first order in
1/K

(2− γ ) = 2P 2
∞

∫ 1

0
dhhe−P∞hA(1 +h) + O(1/K). (15)

Combining equation (13) with equation (15) yieldsγ = O(1/K). Hence, the relaxation rate is
an order of magnitude smaller than predicted by the mean-field treatment. It is actually given
by (recall0 = γ /K)

0 = 2P∞
K2

(
A(0)− P 2

∞

∫ 1

0
dhhe−P∞hA(2 +h)

)
+ O(1/K3). (16)

In order to explicitly obtain the coefficient of the leading term in 1/K2, one needs to solve
equation (4) forh > 1. This can be achieved by assuming that the factorization property for
the two-gap distribution function is valid to O(1/K); this leads to a closed set of equations for
A(h) for the three intervals [0, 1], [1, 2] and [2, 3] that can be solved explicitly to O(1/K);
Inserting the result in equation (16), one eventually finds the following dominant behaviour
for very largeK:

0 ' 2
(lnK)3

K2
. (17)

In figure 2(b) the broken curve corresponding to equation (17) is in good agreement with the
simulation results, contrary to the mean-field predictions.

We have also examined the time correlations of the density fluctuationsδρ(t) around the
equilibrium state. Specifically, we have evaluated the density–density correlation function
and verified that at long time, the correlation function decays exponentially with a relaxation
rate which is the same as that obtained by equation (17), in agreement with the Onsager
linear regression principle. Both the fluctuation-dissipation relation and the time translational
invariance are satisfied. However, (interrupted) aging [11] is expected in the 1/ ln(t)-regime.
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